Lip(Sys)2/RamanEvolution Spectrometer

From DAAP
Jump to navigation Jump to search
Device

Pilot process
Keywords
Organisation
Latitude
48.7623
Longitude
2.27359

Spectromètre Raman, LabRAM HR Evolution, Horiba

Description

Le LabRAM HR Evolution est un micro-spectromètre Raman à haute résolution. Il est adapté aux mesures micro et macro et couvre une gamme spectrale de 200 à 2100 nm. Il est couplé à une source excitatrice, un laser HeNe, à 633nm. Un objectif à courte distance focale MPLAN N 100X (0.90 NA, Olympus) pour les cartographies 2D et un objectif à longue distance focale MPLFLN 100X (0.90 NA, Olympus) pour les z-scans, concentrent la lumière du laser et collectent la lumière rétrodiffusée. Un réseau de 300 tr/mm permet la dispersion de la lumière. Un détecteur CDD (1024x256 pixels) assure la conversion des signaux lumineux en signaux électriques.

Les logiciels Labspec 6® et SimcaP® sont utilisés pour le traitement des données.

Publications

  1. Al Salloum, H., et al., Studying DEHP migration in plasticized PVC used for blood bags by coupling Raman confocal microscopy to UV spectroscopy. Mater Sci Eng C Mater Biol Appl, 2016. 61: p. 56-62.
  2. Caudron, E., et al., Identification of hematite particles in sealed glass containers for pharmaceutical uses by Raman microspectroscopy. J Pharm Biomed Anal, 2011. 54(4): p. 866-8.
  3. Gendre, C., et al., Comprehensive study of dynamic curing effect on tablet coating structure. Eur J Pharm Biopharm, 2012. 81(3): p. 657-65.
  4. Gendre, C., et al., Comparative static curing versus dynamic curing on tablet coating structures. Int J Pharm, 2013. 453(2): p. 448-53.
  5. Guillard, E., et al., Thermal dependence of Raman descriptors of ceramides. Part II: effect of chains lengths and head group structures. Anal Bioanal Chem, 2011. 399(3): p. 1201-13.
  6. Quatela, A., et al., In vivo Raman Microspectroscopy: Intra- and Intersubject Variability of Stratum Corneum Spectral Markers. Skin Pharmacol Physiol, 2016. 29(2): p. 102-9
  7. Quatela, A., A. Tfayli, and A. Baillet-Guffroy, Examination of the effect of Stratum Corneum isolation process on the integrity of the barrier function: a confocal Raman spectroscopy study. Skin Res Technol, 2015. 22(1): p. 75-80.
  8. Tfayli, A., et al., Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling. Exp Dermatol, 2014. 23(6): p. 441-3.
  9. Tfayli, A., et al., Thermal dependence of Raman descriptors of ceramides. Part I: effect of double bonds in hydrocarbon chains. Anal Bioanal Chem, 2010. 397(3): p. 1281-96.
  10. Tfayli, A., et al., Raman spectroscopy: feasibility of in vivo survey of stratum corneum lipids, effect of natural aging. Eur J Dermatol, 2011. 22(1): p. 36-41.
  11. Tfayli, A., et al., Molecular interactions of penetration enhancers within ceramides organization: a Raman spectroscopy approach. Analyst, 2012. 137(21): p. 5002-10.
  12. Tfayli, A., et al., Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5. Analyst, 2013. 138(21): p. 6582-8.
  13. Vyumvuhore, R., et al., The relationship between water loss, mechanical stress, and molecular structure of human stratum corneum ex vivo. J Biophotonics, 2013. 8(3): p. 217-25.
  14. Vyumvuhore, R., et al., Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst, 2013. 138(14): p. 4103-11.
  15. Vyumvuhore, R., et al., Vibrational spectroscopy coupled to classical least square analysis, a new approach for determination of skin moisturizing agents' mechanisms. Skin Res Technol, 2013. 20(3): p. 282-92.